This text discusses simulation process for circuits including clamper, voltage and current divider, transformer modeling, transistor as an amplifier, transistor as a switch, MOSFET modeling, RC and LC filters, step and impulse response to RL and RC circuits, amplitude modulator in a step-by-step manner for more clarity and understanding to the readers. It covers electronic circuits like rectifiers, RC filters, transistor as an amplifier, operational amplifiers, pulse response to a series RC circuit, time domain simulation with a triangular input signal, and modulation in detail. The text presents issues that occur in practical implementation of various electronic circuits and assist the readers in finding solutions to those issues using the software. Aimed at undergraduate, graduate students, and academic researchers in the areas including electrical and electronic communications engineering, this book discusses simulation of analog circuits and their behavior for different parameters. Covers AC/DC circuit modeling using regular and parametric sweep methods. The theory will be augmented with practical electrical circuit examples that will help readers to better understand the topic. Discusses circuits like rectifiers, RC filters, transistor as an amplifier, and operational amplifiers in detail.

In electronic circuit and system design, the word noise is used to refer to any undesired excitation on the system. In other contexts, noise is also used to refer to signals or excitations which exhibit chaotic or random behavior. The source of noise can be either internal or external to the system. For instance, the thermal and shot noise generated within integrated circuit devices are in internal noise sources, and the noise picked up from the environment through electromagnetic interference is an external one. Electromagnetic interference can also occur between different components of the same system. In integrated circuits (Ics), signals in one part of the system can propagate to the other parts of the same system through electromagnetic coupling, power supply lines and the IC substrate. For instance, in a mixed-signal IC, the switching activity in the digital parts of the circuit can adversely affect the performance of the analog section of the circuit by traveling through the power supply lines and the substrate. Prediction of the effect of these noise sources on the performance of an electronic system is called noise analysis or noise simulation. A methodology for the noise analysis or simulation of an electronic system usually has the following four components: 2 NOISE IN NONLINEAR ELECTRONIC CIRCUITS • Mathematical representations or models for the noise sources. • Mathematical model or representation for the system that is under the influence of the noise sources.

Circuit Simulation

Malik's new text is both thorough and forward looking. It features a flexible approach to the use of SPICE in common electrical and electronic problems. This revised edition features two-port network analysis, loop gain analysis, and expanded coverage of group and power electronics applications. https://powersimtech.com/2021/10/01/book-release-power-electronics-circuit-analysis-with-psim/

A guide to the use of PSpice in common electrical and electronic problems. This revised edition features two-port network analysis, loop gain analysis, and expanded coverage of group and power electronics applications. With comprehensive, in-depth coverage, integrated discussions of SPICE, and a strong design orientation, Malik's new text is both thorough and forward looking. It features a flexible organization and dynamic coverage using algebraic hand analysis and simple models to provide a basic understanding, and carefully-selected SPICE examples and exercises to extend understanding beyond simple models. Students on electronics courses should find this text useful.

This textbook teaches in one, coherent presentation the three distinct topics of analysis of electronic circuits, mathematical numerical algorithms and coding in a software such as MATLAB®. By combining the capabilities of circuit simulators and mathematical software, the author teaches key concepts of circuit analysis and algorithms, using a modern approach. The DC, Transient, AC, Noise and behavioral analyses are implemented in MATLAB to study the complete characteristics of a variety of electronic circuits, such as amplifiers, rectifiers, hysteresis circuits, harmonic traps and passes, polyphase filters, directional couplers, electro-static discharge and piezoelectric crystals. This book teaches basic and advanced circuit analysis, by incorporating algorithms and simulations that teach readers how to develop their own simulators and fully characterize and design electronic circuits. Teaches students and practitioners DC, AC, Transient, Noise and Behavioral analyses using MATLAB. Shows readers how to create their own complete simulator in MATLAB by adding materials learned in all 6 chapters of the book; Balances theory, math and analysis; Introduces many examples such as noise minimization, parameter optimization, power splitters, harmonic traps and passes, directional couplers, polyphase filters and electro-static discharge that are hardly referenced in other textbooks; Teaches how to create the fundamental analysis functions such as linear and nonlinear equation solvers, determinant calculation, random number generation and Fast Fourier transformation rather than using the built-in native MATLAB codes.

COMPUTATIONAL METHODS IN CIRCUIT SIMULATION INCLUDES THEORY, NUMERICAL TECHNIQUES, AND RECIPES ON HOW TO BUILD A SIMULATOR FOR THE ANALYSIS OF VERY LARGE CIRCUITS WITH COMPLEX DEVICE AND COMPONENT MODELS. This book provides theoretical basis of circuit simulation with special emphasis on the simulation of very large circuits and systems. The results are presented in algorithmic form and recipes that can be easily translated into computer code. The book: " Explains the theoretical basis of circuit formulation and describes the Extended Nodal Analysis, which is a generalization of the traditional nodal and modified nodal analysis that allows the inclusion of complex device models."

Page 1/5
Describes how to build the circuit equations from the input netlist using the stamp approach.* Presents the solution of large linear equations using sparse matrix techniques, partitioning, iterative and projection methods.* Covers DC solution or the solution of nonlinear algebraic equations, including variations of Newton method and piecewise-linear techniques.* Covers transient analysis or solution of algebraic-differential equations, including integration formulas, stability, error estimation and step-size control.* Explains reduced-order modeling for the simulation of very large dynamic circuits and systems.* Includes sensitivity analysis.

Simulation of Power Electronics Converters Using PLECS® is a guide to simulating a power electronics circuit using the latest powerful software for power electronics circuit simulation purposes. This book assists engineers gain an increased understanding of circuit operation so they can, for a given set of specifications, choose a topology, select appropriate circuit component types and values, estimate circuit performance, and complete the design by ensuring that the circuit performance will meet specifications even with the anticipated variations in operating conditions and circuit component values. This book covers the fundamentals of power electronics converter simulation, along with an analysis of power electronics converters using PLECS. It concludes with real-world simulation examples for applied content, making this book useful for all those in the electrical and electronic engineering field. Contains unique examples on the simulation of power electronics converters using PLECS® Includes explanations and guidance on all included simulations for re-doing the simulations Incorporates analysis and design for rapidly creating power electronics circuits with high accuracy

Circuit simulation is widely used for the design of circuits, both discrete and integrated. Device modeling is an important aspect of circuit simulation since it is the link between the physical device and the simulator device. Currently available circuit simulation programs provide a variety of built-in models. Many circuit designers use these built-in models whereas some incorporate new models in the circuit simulation programs. Understanding device modeling with particular emphasis on circuit simulation will be helpful in utilizing the built-in models more efficiently as well as in implementing new models. SPICE is used as a vehicle since it is the most widely used circuit simulation program. How ever, some issues are addressed which are not directly applicable to SPICE but are applicable to circuit simulation in general. These discussions are useful for modifying SPICE and for understanding other simulation programs. The general version 2G. 6 is used as a reference for SPICE, although numerous different versions exist with different modifications. This book describes field effect transistor models commonly used in a variety of circuit simulation programs. Understanding of the basic device physics and some familiarity with device modeling is assumed. Derivation of the model equations is not included. (SPICE is a circuit simulation program available from EECS Industrial Support Office, 461 Cory Hall, University of California, Berkeley, CA 94720.) Acknowledgements I wish to express my gratitude to Valid Logic Systems, Inc.

This book deals with the analysis and design of analog integrated circuits that form the basis of present-day communication systems. The material is intended to be a textbook for class use but should also be a valuable source of information for a practicing engineer. Both bipolar and MOS transistor circuits are analyzed and many numerical examples are used to illustrate the analysis and design techniques developed in this book. A set of problems is presented at the end of the book which covers the subject matter of the whole book. The book has originated out of a senior-level course on nonlinear, analog integrated circuits at the University of California at Berkeley. The material contained in this book has been taught by the first author for several years and the book has been class tested for six semesters. This along with feedback from the students is reflected in the organization and writing of the text. We expect that the students have had an introductory course in analog circuits so that they are familiar with some of the basic analysis techniques and also with the operating principles of the various semiconductor devices.

Several important, basic circuits and concepts are reviewed as the subject matter is developed. Circuit simulation has been a topic of great interest to the integrated circuit design community for many years. It is a difficult, and interesting, problem because circuit simulators are very heavily used, consuming thousands of computer hours every year, and therefore the algorithms must be very efficient. In addition, circuit simulators are heavily relied upon, with millions of dollars being gambled on their accuracy, and therefore the algorithms must be very robust. At the University of California, Berkeley, a great deal of research has been devoted to the study of both the numerical properties and the efficient implementation of circuit simulation algorithms. Research efforts have led to several programs, starting with CANCER in the 1960's and the enormously successful SPICE program in the early 1970's, to MOTIS-C, SPLICE, and RELAX in the late 1970's, and finally to SPLICE2 and RELAX2 in the 1980's. Our primary goal in writing this book was to present some of the results of our current research on the application of relaxation algorithms to circuit simulation. As we began, we realized that a large body of mathematical and experimental results had been amassed over the past twenty years by graduate students, professors, and industry researchers working on circuit simulation. It became a secondary goal to try to find an organization of this mass of material that was mathematically rigorous, had practical relevance, and still retained the natural intuitive simplicity of the circuit simulation subject. Quantum Circuit Simulation covers the fundamentals of linear algebra and introduces basic concepts of quantum physics needed to understand quantum circuits and algorithms. It requires only basic familiarity with algebra, graph algorithms and computer engineering. After introducing necessary background, the authors describe key simulation techniques that have so far been scattered throughout the research literature in physics, computer science, and computer engineering. Quantum Circuit Simulation also illustrates the development of software for quantum simulation by example of the QuidPro package, which is freely available and can be used by students of quantum information as a “quantum calculator.”

Generate faster, more accurate SPICE simulations! Make your SPICE simulations faster, more accurate - and avoid nonconvergence using the breakthrough methods packed into the Second Edition of Inside SPICE. In this updated and revised bestseller, Ron Kielkowski gives you the hands-on help and guidance you need to create more effective software modules for simulating circuit behavior. This one-of-a-kind modeling toll and troubleshooting brings you up to speed on the latest commercially-Spice-like simulators, including HSPice, PSpice, IS_SPICE and MICROCAP IV...delivers proven solutions to the full range of circuit simulation problems, including convergence and accuracy problems...shows you how to make difficult measurement such as loop gain of an op amp or distortion measurements of locked circuits like converters and sample-and-hold circuits...measure any class of circuits, such as oscillators, charge-storage circuits, or very large circuits...and more.
This book is a unique combination of a basic guide to general analog circuit simulation and a SPICE OPUS software manual, which may be used as a textbook or self-study reference. The book is divided into three parts: mathematical theory of circuit analysis, a crash course on SPICE OPUS, and a complete SPICE OPUS reference guide. All simulations as well as the free simulator software may be directly downloaded from the SPICE OPUS homepage: www.spiceopus.si. Circuit Simulation with SPICE OPUS is intended for a wide audience of undergraduate and graduate students, researchers, and practitioners in electrical and systems engineering, circuit design, and simulation development. This comprehensive volume reveals how, using basic principles of elementary circuit analysis along with familiar numerical methods, readers can build up sophisticated electronic simulation tools capable of analyzing large, complicated circuits. The book describes in clear language an especially broad range of uses to which circuit simulation principles may be put—from running general applications, to understand why SPICE works in some cases and not in others. A reprint of the classic text, this book popularized compact modeling of electronic and semiconductor devices and components for college and graduate-school classrooms, and manufacturing engineering, over a decade ago. The first comprehensive book on MOS transistor compact modeling, it was the most cited among similar books in the area and remains the most frequently cited today. The coverage is device-physical and based and continues to be relevant to the latest advances in MOS transistor modeling. This also is the only book that discusses in detail how to measure device model parameters required for circuit simulation. The book deals with the MOS Field Effect Transistor (MOSFET) models that are derived from basic semiconductor theory. Various models are developed, ranging from simple to more sophisticated models that take into account new physical effects observed in submicron transistors used in today's (1993) MOS VLSI technology. The assumptions used to arrive at the models are emphasized so that the accuracy of the models in describing the device characteristics are clearly understood. Due to the importance of designing reliable circuits, device reliability models are also covered. Understanding these models is essential when designing circuits for state-of-the-art MOS ICs. A Definitive text on developing circuit simulators gives a clear description of the numerical techniques and algorithms that are part of modern circuit simulators, with a focus on the most commonly used simulation modes: DC analysis and transient analysis. Tested in a graduate course on circuit simulation at the University of Toronto, this unique text provides the reader with sufficient detail and mathematical rigor to write his/her own basic circuit simulator. There is detailed coverage throughout of the mathematical and numerical techniques that are the basis for the various simulation topics, which facilitates a complete understanding of practical simulation techniques. In addition, Circuit Simulation: Explores a number of modern techniques from numerical analysis that are not synthesized anywhere else Covers network equation formulation in detail, with an emphasis on modified nodal analysis Provides a comprehensive treatment of the most relevant aspects of linear and nonlinear system solution techniques States all theorems without proof in order to maintain the focus on the end-goal of providing coverage of practical simulation methods Provides ample references for further study Enables newcomers to circuit simulation to understand the material in a concrete and holistic manner With problem sets and computer projects at the end of every chapter, Circuit Simulation is ideally suited for a graduate course on this topic. It is also a practical reference for design engineers and computer-aided design practitioners, as well as researchers and developers in both industry and academia. From little more than a circuit-theoretical concept in 1965, computer-aided circuit simulation developed into an essential and routinely used design tool in less than ten years. In 1965 it was costly and time consuming to analyze circuits consisting of a half-dozen transistors. By 1975 circuits composed of hundreds of transistors were analyzed routinely. Today, simulation capabilities easily extend to thousands of transistors. Circuit designers use simulation as routinely as they are to use a slide rule and almost as easily as they now use hand-held calculators. However, just as with the slide rule or hand-held calculator, some designers are found to use circuit simulation more effectively than others. They ask better questions, do fewer analyses, and get better answers. In general, they are more effective in using circuit simulation as a design tool. Why? Certainly, design experience, skill, intuition, and even luck contribute to a designer's effectiveness. At the same time those who design and develop circuit simulation programs would like to believe that their programs are so easy and straightforward to use, so well debugged and so efficient that even their own grandmother could design effectively using their program. Circuit Simulation Methods and Algorithms provides a step-by-step theoretical consideration of methods, techniques, and algorithms in an easy-to-understand format. Many illustrations explain more difficult problems and present instructive circuits. The book works on three levels: The simulator-user level for practitioners and students who want to better understand circuit simulators. The basic theoretical level, with examples, dedicated to students and beginning researchers. The thorough level for deep insight into circuit simulation based on computer experiments using PSPICE and OPTIMA. Only basic mathematical knowledge, such as matrix algebra, derivatives, and integrals, is presumed. This new book, written by Andre Vladimirescu, who was instrumental in the development of SPICE at the University of California Berkeley, introduces computer simulation of electrical and electronics circuits based on the SPICE standard. Relying on the functionality first supported in SPICE2 that is now supported in all SPICE programs, this text is addressed to all users of electrical simulation. The approach to learning circuit simulation is to interpret simulation results in relation to electrical engineering fundamentals; the book asks the student to solve most circuit examples by hand before verifying the results with SPICE. Addressed to both the SPICE novice and the experienced user, the first six chapters provide the relevant information on SPICE functionality for the analysis of linear as well as nonlinear circuits. Each of these chapters starts out with a linear example accessible to any new user of SPICE and proceeds with nonlinear transistor circuits. The latter part of the book goes into more detail on such issues as functional and hierarchical models, distortion analysis, basic algorithms in SPICE and related options parameters, and, how to direct SPICE to find a solution when it does not converge to a solution. The approach emphasizes that SPICE is not a substitute for knowledge of circuit operation but a complement. The SPICE Book is different from previously published books in the approach of solving circuit problems with a computer. The solution to most circuit examples is sketched out by hand first and followed by a SPICE verification. For more complex circuits it is not feasible to find the solution by hand but the approach stresses the need for the SPICE user to understand the results. Readers gain a better comprehension of SPICE thanks to the importance placed on the relation between EE fundamentals and computer simulation. The tutorial approach advances from the hand solution of a circuit to SPICE verification and simulation results interpretation. This book teaches the approach to electrical circuit simulation rather than a specific simulation program. Examples are simulated alternatively with SPICE2, SPICE3 or PSPICE. Accurate descriptions, simulation rationale, and cogent explanations make this an invaluable reference. Simulation of Software Tools for Electrical Systems: Theory and Practice offers engineers and students what they need to update their understanding of software tools for electric systems, along with guidance on a variety of tools on which to model electrical systems—from device level to system level. The book uses MATLAB, PSIM, Pspice and PSCAD to discuss how to build simulation models of electrical systems that assist in the practice or implementation of simulation software tools in switches, circuits, controllers, instruments and automation system design. In addition, the book covers power electronic switches and FACTS controller device simulation model building with the use of Labview and PLC for industrial automation, process control, monitoring and measurement in electrical systems and hybrid optimization software HOMER is presented for researchers in renewable energy systems. Includes interactive content for
numerical computation, visualization and programming for learning the software tools related to electrical sciences identifies complex and difficult topics illustrated by useable examples. Analyzes the simulation of electrical systems, hydraulic, and pneumatic systems using different software, including MATLAB, LABVIEW, MULTISIM, AUTOSIM, and PSCAD.

In Douglas Adams' book 'Hitchhiker's Guide to the Galaxy', hyper-intelligent beings reached a point in their existence where they wanted to understand the purpose of their own existence and the universe. They built a supercomputer, called Deep Thought, and upon completion, they asked it for the answer to the ultimate question of life, the universe and everything else. The computer worked for several millennia on the answers to all these questions. When the day arrived for hyper-intelligent beings to receive the answer, they were stunned, shocked and disappointed to hear that the answer was simply 42. The still open questions to scientists and engineers are typically much simpler and consequently the answers are more reasonable. Furthermore, because human beings are too impatient and not ready to wait for such a long period, high-performance computing techniques have been developed, leading to much faster answers. Based on these developments in the last two decades, scientific and engineering computing has evolved to a key technology which plays an important role in determining, or at least shaping, future research and development activities in many branches of industry. Development work has been going on all over the world resulting in numerical methods that are now available for simulations that were not foreseeable some years ago. However, these days the availability of supercomputers with Teraflop performance supports extensive computations with technical relevance. A new age of engineering has started.

Anyone involved in circuit design that needs the practical know-how it takes to design a successful circuit or product, will find this practical guide to using Capture-PSpice (written by a former Cadence PSpice expert for Europe) an essential book. The text delivers step-by-step guidance on using Capture-PSpice to help professionals produce reliable, effective designs. Readers will learn how to get up and running quickly and efficiently with industry standard software and in sufficient detail to enable building upon personal experience to avoid common errors and pitfalls. This book is of great benefit to professional electronics design engineers, advanced amateur electronics designers, electronic engineering students and academic staff looking for a book with a real-world design outlook. Provides both a comprehensive user guide, and a detailed overview of simulation Each chapter has worked and ready to try sample designs and provides a wide range of to-do exercises Core skills are developed using a running case study circuit Covers Capture and PSpice together for the first time

This book is concerned with circuit simulation using National Instruments Multisim. It focuses on the use and comprehension of the working techniques for electrical and electronic circuit simulation. The first chapters are devoted to basic circuit analysis. It starts by describing in detail how to perform a DC analysis using only resistors and independent and controlled sources. Then, it introduces capacitors and inductors to make a transient analysis. In the case of transient analysis, it is possible to have an initial condition either in the capacitor voltage or in the inductor current, or both. Fourier analysis is discussed in the context of transient analysis. Next, we make a treatment of AC analysis to simulate the frequency response of a circuit. Then, we introduce diodes, transistors, and circuits composed by them and perform DC, transient, and AC analyses. The book ends with simulation of digital circuits. A practical approach is followed through the chapters, using step-by-step examples to introduce new Multisim circuit elements, tools, analyses, and virtual instruments for measurement. The examples are clearly commented and illustrated. The different tools available on Multisim are used when appropriate so readers learn which analyses are available to them. This part of the learning outcomes that should result after each set of end-of-chapter exercises is worked out. Table of Contents: Introduction to Circuit Simulation / Resistive Circuits / Time Domain Analysis -- Transient Analysis / Frequency Domain Analysis -- AC Analysis / Semiconductor Devices / Digital Circuits

A practical, tutorial guide to the nonlinear methods and techniques needed to design real-world microwave circuits. This book covers algorithmic aspects of computer aided circuit design for VLSI of large circuits. The large scale aspect of VLSI requires a reorientation towards new and more efficient techniques. Many algorithms have survived the test of time, while others are suffering from the usual problem of polynomial or exponential running time complexity and storage requirements. The approaches presented in this book are techniques which were developed in response to the VLSI problems. The most recent “exact” circuit analysis and simulation techniques are presented, such as waveform relaxation and timing simulation. The book concentrates on the analysis and simulation of large circuits which exceed the capabilities of general purpose analyzers in both compute time and storage. Also discussed are circuit models for switch level simulation, techniques and circuit models for interconnections, capacitance and inducances and optimization techniques. The language and notation have been kept uniform throughout the book to help the reader to maintain the continuity between the topics discussed in the different chapters. All algorithms are written in a Pascal style. The terminology used should reflect the emerging language used in most of the VLSI circuit design community. The book includes proven approaches as well as techniques which are presently in a research state:

- circuit simulation, electronic circuits, discrete circuits, AC analysis, transient analysis, AC analysis, frequency response, Bode plots, Fourier analysis, operational amplifiers, digital circuit simulation, virtual instruments

Multisim is now the de facto standard for circuit simulation. It is a SPICE-based circuit simulator which combines analog, discrete-time, and mixed-mode circuits. In addition, it is the only simulator which incorporates microcontroller simulation in the same environment. It also includes a tool for printed circuit board design. Advanced Circuit Simulation Using Multisim Workbench is a companion book to Circuit Analysis Using Multisim, published by Morgan & Claypool in 2011. This new book covers advanced analyses and the creation of models and subcircuits. It also includes coverage of transmission lines, the special elements which are used to connect components in PCBs and integrated circuits. Finally, it includes a description of Ultiboard, the tool for PCB creation from a circuit description in Multisim. Both books completely cover most of the important features available for a successful circuit simulation with Multisim. Table of Contents: Models and Subcircuits / Transmission Lines / Other Types of Analyses / Simulating Microcontrollers / PCB Design With Ultiboard

This book shows readers how to learn analog electronics by simulating circuits. Readers will be enabled to master basic electric circuit analysis, as an essential component of
their professional education. The author’s approach enables readers to learn theory as needed, then immediately apply it to the simulation of circuits based on that theory, while using the resulting tables, graphs and waveforms to gain a deeper insight into the theory, as well as where theory and practice diverge! Circuit simulation has become an essential tool in circuit design and without it's aid, analogue and mixed-signal IC design would be impossible. However the applicability and limitations of circuit simulators have not been generally well understood and this book now provides a clear and easy to follow explanation of their function. The material covered includes the algorithms used in circuit simulation and the numerical techniques needed for linear and non-linear DC analysis, transient analysis and AC analysis. The book goes on to explain the numeric methods to include sensitivity and tolerance analysis and optimisation of component values for circuit design. The final part deals with logic simulation and mixed-signal simulation algorithms. There are comprehensive and detailed descriptions of the numerical methods and the material is presented in a way that provides for the needs of both experienced engineers who wish to extend their knowledge of current tools and techniques, and of advanced students and researchers who wish to develop new simulators.

This guide to the PSpice circuit simulator provides a tutorial approach to using PSpice through graduated examples. This edition includes enhanced pedagogical features, and coverage of the newest capabilities of this program. This edition includes enhanced pedagogical features, and coverage of the newest capabilities of this program. This edition includes enhanced pedagogical features, and coverage of the newest capabilities of this program. This edition includes enhanced pedagogical features, and coverage of the newest capabilities of this program. This edition includes enhanced pedagogical features, and coverage of the newest capabilities of this program. This edition includes enhanced pedagogical features, and coverage of the newest capabilities of this program.

This book shows how to use PSpice to quickly analyze common industrial power electronic and power circuits. It would be most useful to an electrical engineer. The book begins with a brief review of PSpice with DC, AC, and transient analyses of simple circuits. It follows with examples that solve typical industrial circuit problems. One of the examples predicts the waveform of the electrical noise that would be transmitted through an inductor. In that example, PSpice would help the engineer properly size a filtering inductor. This can be important if the inductor is large or a custom item. Other examples find steady state and transient solutions for unbalanced three phase faults. PSpice's Probe program is used to make realistic output traces of transient analysis voltages, currents, and powers. All of the books examples are done with the free (Demo) Release 16.0 version of PSpice. Sources for obtaining free (Demo) copies of PSpice and other Spice programs are provided.

Engineering productivity in integrated circuit product design and development today is limited largely by the effectiveness of the CAD tools used. For those domains of product design that are highly dependent on transistor-level circuit design and optimization, such as high-speed logic and memory, mixed-signal analog-digital interfaces, RF functions, power integrated circuits, and so forth, circuit simulation is perhaps the single most important tool. As the complexity and performance of integrated electronic systems has increased with scaling of technology feature size, the capabilities and sophistication of the underlying circuit simulation tools have correspondingly increased. The absolute size of circuits requiring transistor-level simulation has increased dramatically, creating not only problems of computing power resources but also problems of task organization, complexity management, output representation, initial condition setup, and so forth. Also, as circuits of more complexity and mixed types of functionality are attacked with simulation, the spread between time constants or event time scales within the circuit has tended to become wider, requiring new strategies in simulators to deal with large time constant spreads.

This Book On A Very Topical Subject Is Aimed At Engineers Who Either Use Or Develop Cad Tools For Circuit Design, Be It At The Discrete Device Level Or At The Lsi/Vlsi Level. The Book Is Unique In The Sense That It Covers Analog Circuit Simulation, Device Models, Logic Simulation And Fault Simulation. These Topics Traditionally Belong To Different Areas Of Electrical Engineering And Are Therefore Not Covered In One Book. However, A Person Doing Circuit Design On A Computer Today Needs To Know All Aspects Of The Simulation. This Book Attempts To Satisfy This Need. Many Examples Of Programs As Well As Applications Are Given. Every Chapter Contains Solved As Well As Unsolved Problems. In Addition, Programming Assignments Are Included. Mathematics Has Been Kept To A Minimum And An Intuitive Approach Has Been Taken. The Background Required Is That Of Final Year Undergraduate In Electrical Engineering. It Is Expected That Much Of This Material Would Percolate Down To More Basic Courses In Future Years.

Copyright: 8ca971b8b370f73c5d033fffb36184b2d