A Novel Radar Signal Recognition Method Based On Deep Learning

Micro-Doppler Characteristics of Radar Targets is a monograph on radar target’s micro-Doppler effect theory and micro-Doppler feature extraction techniques. The micro-Doppler effect is presented from two aspects, including micro-Doppler effect analysis and micro-Doppler feature extraction, with micro-Doppler effects induced by different micro-motional targets in different radar systems analyzed and several methods of micro-Doppler feature extraction and three-dimensional micro-motion feature reconstruction presented. The main contents of this book include micro-Doppler effect in narrowband radar, micro-Doppler effect in wideband radar, micro-Doppler effect in bistatic radar, micro-Doppler feature analysis and extraction, and three-dimensional micro-motion feature reconstruction, etc. This book can be used as a reference for scientific and technical personnel engaged in radar signal processing and automatic target recognition, etc. It is especially suitable for beginners who are interested in research on micro-Doppler effect in radar. Presents new views on micro-Doppler effects, analyzing and discussing micro-Doppler effect in wideband radar rather than focusing on narrowband Provides several new methods for micro-Doppler feature extraction which are very helpful and practical for readers Includes practical cases that align with main MATLAB codes in each chapter, with detailed program annotations Radar networks are increasingly regarded as an efficient approach to enhancing radar capabilities in the face of popular anti-radar techniques and hostile operating environments. Reader-friendly and self-contained, this book provides a comprehensive overview of the latest radar networking technologies. The text addresses basic, relevant aspects of radar signal processing and statistical theories, including both civilian and military radar applications. It also discusses emerging topics that directly relate to networks, such as multiple-input–multiple-output (MIMO) radars, waveform design, and diversity via multiple transmitters. Other topics covered include target recognition and imaging using radar networks. Features Gives a comprehensive view of the latest radar network technologies Covers both civilian and military applications of radar Provides basic statistics and signal processing necessary for understanding radar networks Includes up-to-date information on MIMO radars Presents waveform design and diversity for radar networks with multiple transmitters Radar Signal Processing and Its Applications brings together in one place important contributions and up-to-date research results in this fast-moving area. In twelve selected chapters, it describes the latest advances in architectures, design methods, and applications of radar signal processing. The contributors to this work were selected from the leading researchers and practitioners in the field. This work, originally published as Volume 14, Numbers 1-3 of the journal, Multidimensional Systems and Signal Processing, will be valuable to anyone working or researching in the field of radar signal processing. It serves as an excellent reference, providing insight into some of the most challenging issues being examined today. This 1179-page book assembles the complete contributions to the International Conference on Intelligent Computing, ICIC 2006: one volume of Lecture Notes in Computer Science (LNCS); one of Lecture Notes in Artificial Intelligence (LNAI); one of Lecture Notes in Bioinformatics (LNBI); and two volumes of Lecture Notes in Control
Novel deep learning approaches are achieving state-of-the-art accuracy in the area of radar target recognition, enabling applications beyond the scope of human-level performance. This book provides an introduction to the unique aspects of machine learning for radar signal processing that any scientist or engineer seeking to apply these technologies ought to be aware of.

Wavelet analysis and its applications have been one of the fastest-growing research areas in the past several years. Wavelet theory has been employed in numerous fields and applications, such as signal and image processing, communication systems, biomedical imaging, radar, and air acoustics. Active media technology is concerned with the development of autonomous computational or physical entities capable of perceiving, reasoning, adapting, learning, cooperating, and delegating in a dynamic environment. This book captures the essence of the state of the art in wavelet analysis and its applications and active media technology. At the Congress, invited talks were delivered by distinguished researchers, namely Prof John Daugman of Cambridge University, UK; Prof Bruno Torresani of INRIA, France; Prof Victor Wickerhauser of Washington University, USA; Prof Ning Zhong of the Maebashi Institute of Technology, Japan; Prof John Yen of Pennsylvania State University, USA; and Prof Sankar K Pal of the Indian Statistical Institute, India.

This book brings together papers from the 2018 International Conference on Communications, Signal Processing, and Systems, which was held in Dalian, China on July 14–16, 2018. Presenting the latest developments and discussing the interactions and links between these multidisciplinary fields, the book spans topics ranging from
communications, signal processing and systems. It is aimed at undergraduate and graduate electrical engineering, computer science and mathematics students, researchers and engineers from academia and industry as well as government employees.

This exciting new resource covers various emerging applications of short range radars, including people counting and tracking, gesture sensing, human activity recognition, air-drawing, material classification, object classification, vital sensing by extracting features such as range-Doppler Images (RDI), range-cross range images, Doppler Spectrogram or directly feeding raw ADC data to the classifiers. The book also presents how deep learning architectures are replacing conventional radar signal processing pipelines enabling new applications and results. It describes how deep convolutional neural networks (DCNN), long-short term memory (LSTM), feedforward networks, regularization, optimization algorithms, connectionist

This exciting new resource presents emerging applications of artificial intelligence and deep learning in short-range radar. The book covers applications ranging from industrial, consumer space to emerging automotive applications. The book presents several human-machine interface (HMI) applications, such as gesture recognition and sensing, human activity classification, air-writing, material classification, vital sensing, people sensing, people counting, people localization and in-cabin automotive occupancy and smart trunk opening. The underpinnings of deep learning are explored, outlining the history of neural networks and the optimization algorithms to train them.

Modern deep convolutional neural network (DCNN), popular DCNN architectures for computer vision and their features are also introduced. The book presents other deep learning architectures, such as long-short term memory (LSTM), auto-encoders, variational auto-encoders (VAE), and generative adversarial networks (GAN). The application of human activity recognition as well as the application of air-writing using a network of short-range radars are outlined. This book demonstrates and highlights how deep learning is enabling several advanced industrial, consumer and in-cabin applications of short-range radars, which weren't otherwise possible. It illustrates various advanced applications, their respective challenges, and how they are been addressed using different deep learning architectures and algorithms.

Electronics and Instrumentation, Volume 35: Modulation, Resolution and Signal Processing in Radar, Sonar and Related Systems presents the practical limitations and potentialities of advanced modulation systems. This book discusses the concepts and techniques in the radar context, but they are equally essential to sonar and to a wide range of signaling and data-processing applications, including seismology, radio astronomy, and band-spread communications. Organized into 15 chapters, this volume begins with an overview of the principal developments sought in pulse radar. This text then provides a discussion and analysis of a wide range of various modulation systems. Other chapters consider the intrinsic Doppler resolving power of a radar.
system. This book discusses as well the power illuminating a radar or sonar target that may be comprised of one or more discrete pulses. The final chapter deals with the transmitter-modulator circuits and valves. This book is a valuable resource for electronic engineers and scientists.


In past twenty years or so, information technology has influenced and changed every aspect of our lives and our cultures. Without various IT-based applications, we would find it difficult to keep information stored securely, to process information and business efficiently, and to communicate information conveniently. In the future world, ITs and information engineering will play a very important role in convergence of computing, communication, business and all other computational sciences and application and it also will influence the future world's various areas, including science, engineering, industry, business, law, politics, culture and medicine. The International Conference on Information Engineering and Applications (IEA) 2011 is intended to foster the dissemination of state-of-the-art research in information and business areas, including their models, services, and novel applications associated with their utilization. International Conference on Information Engineering and Applications (IEA) 2011 is organized by Chongqing Normal University, Chongqing University, Shanghai Jiao Tong University, Nanyang Technological University, University of Michigan and the Chongqing University of Arts and Sciences, and is sponsored by National Natural Science Foundation of China (NSFC). The objective of IEA 2011 is to will provide a forum for engineers and scientists in academia, industry, and government to address the most innovative research and development. Information Engineering and Applications provides a summary of this conference including contributions for key speakers on subjects such as technical challenges, social and economic issues, and ideas, results and current work on all aspects of advanced information and business intelligence.

In recent years rough set theory has attracted the attention of many researchers and practitioners all over the world, who have contributed essentially to its
development and applications. We are observing a growing research interest in the foundations of rough sets, including the various logical, mathematical and philosophical aspects of rough sets. Some relationships have already been established between rough sets and other approaches, and also with a wide range of hybrid systems. As a result, rough sets are linked with decision system modeling and analysis of complex systems, fuzzy sets, neural networks, evolutionary computing, data mining and knowledge discovery, pattern recognition, machine learning, and approximate reasoning. In particular, rough sets are used in probabilistic reasoning, granular computing (including information granule calculi based on rough mereology), intelligent control, intelligent agent modeling, identification of autonomous systems, and process specification. Methods based on rough set theory alone or in combination with other approaches have been discovered with a wide range of applications in such areas as: acoustics, bioinformatics, business and finance, chemistry, computer engineering (e.g., data compression, digital image processing, digital signal processing, parallel and distributed computer systems, sensor fusion, fractal engineering), decision analysis and systems, economics, electrical engineering (e.g., control, signal analysis, power systems), environmental studies, informatics, medicine, molecular biology, musicology, neurology, robotics, social science, software engineering, spatial visualization, Web engineering, and Web mining.

Analyzes and discusses the operating principle, signal processing method, and experimental results of this advanced radar technology. This book systematically discusses the operating principle, signal processing method, target measurement technology, and experimental results of a new kind of radar called synthetic impulse and aperture radar (SIAR). The purpose is to help readers acquire an insight into the concept and principle of the SIAR, to know its operation mode, signal processing method, the difference between the traditional radar and itself, the designing ideals, and the developing method. It includes 10 chapters. Chapter 1 gives an introduction to the basic principle of SIAR and its characteristic of four antis. Chapter 2 introduces the operating principles and system constitution of SIAR. Chapter 3 presents the main waveforms and the corresponding signal processing methods. Chapter 4 is about the long-time integration technique. Chapter 5 shows the high-accuracy measurement and tracking of 4D parameters of target in SIAR. The range-angle coupling and decoupling are introduced in Chapter 6, where a criteria for transmit frequency optimization of array elements is studied to overcome the coupling among range, azimuth and elevation. In Chapter 7, detection and tracking of targets in strong interference background is investigated. Chapter 8 analyzes quantitatively the influence of array error on the tracking accuracy of SIAR. Expansion of impulse and aperture synthesis to HF band and microwave band are introduced respectively in Chapter 9 and Chapter 10. The operating principle of the novel bistatic surface wave radar system, as well as the experimental system and the
experimental results are included in Chapter 9. Written by a highly experienced author with extensive knowledge of SIAR (Chen), the book can be used as a reference for engineering technical personnel and scientific research personnel working in the research of SIAR, MIMO radar, digital radar or other new type of radar. It can also be a reference for teachers and students in universities who engage in related professional work. Details the operating principle, signal processing method, target measurement technology, and experimental results of synthetic impulse and aperture radar (SIAR) Expands the technique of impulse and aperture synthesis from the VHF band to the HF band and the microwave band Written by a leading author with many years’ research and practical experience in sparse array SIAR, a typical MIMO radar Engineers, researchers and postgraduates working in radar engineering will find this an invaluable resource.

Radar has been an important topic since its introduction, in a military context, during World War II. Due to advances in technology, it has been necessary to refine the algorithms employed within the signal processing architecture. Hence, this book provides a series of chapters examining some topics in modern radar signal processing. These include synthetic aperture radar, multiple-input multiple-output radar, as well as a series of chapters examining other key issues relevant to the central theme of the book.

MIMO Radar Signal Processing
John Wiley & Sons

Collects the revised and updated versions of lectures presented at an advanced course on [title] held at the Accademia dei Lincei, Rome, 1988, as well as some additional chapters. The 13 chapters address basic concepts on detection, estimation, and optimum filtering; models of clutter; CFAR techniques in clutter; pulse compression and equivalent technologies; pulse doppler radar; MTI, MTD, and adaptive clutter cancellation; rejection of active interference; architecture and implementation of radar signal processors; identification of radar targets; phased arrays; bistatic radars; space-based radar; and evolution and future trends of radar. Primarily for radar engineers and researchers, as well as advanced students. Distributed by INSPEC. Annotation copyright by Book News, Inc., Portland, OR

This book covers the latest developments in radar micro-Doppler signatures and non-cooperative recognition of moving targets, for researchers and advanced students of radar systems. Micro-Doppler signatures is a very broad topic with applications in healthcare, security and surveillance. Edited by leading researchers in the field, the book consists of a series of chapters with contributions from different groups of authors who are international experts on their topics. The following topics are covered: multistatic radar micro-Doppler; passive radar approaches for healthcare; sparsity-driven methods for micro-Doppler detection and classification; deep neural networks for radar micro-Doppler signature classification; classification of personnel for ground-based surveillance; multimodal sensing for assisted living using radar; micro-Doppler
analysis of ballistic targets; small drones and bird signatures as emerging targets; hardware development and applications of portable FMCW radars; digital-IF CW Doppler radar and its contactless healthcare sensing; L1-norm principal component and discriminant analyses of micro-Doppler signatures for indoor human activity recognition; and micro-Doppler signature extraction and analysis for automotive application. Finally, the editors have written a concluding short chapter that brings together an overview of the field and discusses likely future trends.

Offering radar-related software for the analysis and design of radar waveform and signal processing, Radar Signal Analysis and Processing Using MATLAB® provides a comprehensive source of theoretical and practical information on radar signals, signal analysis, and radar signal processing with companion MATLAB® code. After an overview of radar systems operation and design, the book reviews elements of signal theory relevant to radar detection and radar signal processing, along with random variables and processes. The author then presents the unique characteristic of the matched filter and develops a general formula for the output of the matched filter that is valid for any waveform. He analyzes several analog waveforms, including the linear frequency modulation pulse and stepped frequency waveforms, as well as unmodulated pulse-train, binary, polyphase, and frequency codes. The book explores radar target detection and pulse integration, emphasizing the constant false alarm rate. It also covers the stretch processor, the moving target indicator, radar Doppler processing, beamforming, and adaptive array processing. Using configurable MATLAB code, this book demonstrates how to apply signal processing to radar applications. It includes many examples and problems to illustrate the practical application of the theory.

This authoritative resource presents a comprehensive illustration of modern Artificial Intelligence / Machine Learning (AI/ML) technology for radio frequency (RF) data exploitation. It identifies technical challenges, benefits, and directions of deep learning (DL) based object classification using radar data, including synthetic aperture radar (SAR) and high range resolution (HRR) radar. The performance of AI/ML algorithms is provided from an overview of machine learning (ML) theory that includes history, background primer, and examples. Radar data issues of collection, application, and examples for SAR/HRR data and communication signals analysis are discussed. In addition, this book presents practical considerations of deploying such techniques, including performance evaluation, energy-efficient computing, and the future unresolved issues.

This book defines and illustrates key concepts in radar countermeasure, such as PDW generation, signal sorting and recognition, characteristic analysis of intrapulse radar signal, and radar emitter location. Written in a practical way, the book focuses on the implementation of signal processing principles in radar countermeasure and is an essential reference for engineers in radar, electronic
countermeasure system and signal processing research. The subject of this book is theory, principles and methods used in radar algorithm development with a special focus on automotive radar signal processing. In the automotive industry, autonomous driving is currently a hot topic that leads to numerous applications for both safety and driving comfort. It is estimated that full autonomous driving will be realized in the next twenty to thirty years and one of the enabling technologies is radar sensing. This book presents both detection and tracking topics specifically for automotive radar processing. It provides illustrations, figures and tables for the reader to quickly grasp the concepts and start working on practical solutions. The complete and comprehensive coverage of the topic provides both professionals and newcomers with all the essential methods and tools required to successfully implement and evaluate automotive radar processing algorithms.

Wavelet analysis and its applications have been one of the fastest-growing research areas in the past several years. Wavelet theory has been employed in numerous fields and applications, such as signal and image processing, communication systems, biomedical imaging, radar, and air acoustics. Active media technology is concerned with the development of autonomous computational or physical entities capable of perceiving, reasoning, adapting, learning, cooperating, and delegating in a dynamic environment. This book captures the essence of the state of the art in wavelet analysis and its applications and active media technology. At the Congress, invited talks were delivered by distinguished researchers, namely Prof John Daugman of Cambridge University, UK; Prof Bruno Torresani of INRIA, France; Prof Victor Wickerhauser of Washington University, USA, Prof Ning Zhong of the Maebashi Institute of Technology, Japan; Prof John Yen of Pennsylvania State University, USA; and Prof Sankar K Pal of the Indian Statistical Institute, India. Contents: Volume 1: Keynote PresentationsTheoretical ResearchAlgorithm and ConstructionImage Processing and CompressionSignal Processing and CommunicationSystems and Applications Volume 2: Keynote PresentationsTheory and AlgorithmAgent and Multi-Agent SystemActive Computer Systems and InterfacesMulti-Modal Processing, Detection, Recognition and ExpressingPersonalized, Pervasive System and InterfaceSystems and Applications Readership: Graduate students, academics, researchers, and practitioners in the areas of pattern/handwriting recognition, image analysis, computer vision and networking.Keywords:Wavelet Analysis;Image Processing;Signal Processing;Communications;Algorithms and Constructions;Intelligent Agent Technology;Multi-Agent Technology;Multi-Agent Systems;Multi-Modal Processing;Detection

This book text provides an overview of the radar target recognition process and covers the key techniques being developed for operational systems. It is based on the fundamental scientific principles of high resolution radar, and explains how the underlying techniques can be used in real systems, taking into account the
characteristics of practical radar system designs and component limitations. It also addresses operational aspects, such as how high resolution modes would fit in with other functions such as detection and tracking.

Learn about the most recent theoretical and practical advances in radar signal processing using tools and techniques from compressive sensing. Providing a broad perspective that fully demonstrates the impact of these tools, the accessible and tutorial-like chapters cover topics such as clutter rejection, CFAR detection, adaptive beamforming, random arrays for radar, space-time adaptive processing, and MIMO radar. Each chapter includes coverage of theoretical principles, a detailed review of current knowledge, and discussion of key applications, and also highlights the potential benefits of using compressed sensing algorithms. A unified notation and numerous cross-references between chapters make it easy to explore different topics side by side. Written by leading experts from both academia and industry, this is the ideal text for researchers, graduate students and industry professionals working in signal processing and radar.

Fractal analysis has entered a new era. The applications to different areas of knowledge have been surprising. Let us begin with the fractional calculus-fractal geometry relationship, which allows for modeling with extreme precision of phenomena such as diffusion in porous media with fractional partial differential equations in fractal objects. Where the order of the equation is the same as the fractal dimension, this allows us to make calculations with enormous precision in diffusion phenomena-particularly in the oil industry, for new spillage prevention. Main applications to industry, design of fractal antennas to receive all frequencies and that is used in all cell phones, spacecraft, radars, image processing, measure, porosity, turbulence, scattering theory. Benoit Mandelbrot, creator of fractal geometry, would have been surprised by the use of fractal analysis presented in this book: "Part I: Petroleum Industry and Numerical Analysis"; "Part II: Fractal Antennas, Spacecraft, Radars, Image Processing, and Measure"; and "Part III: Scattering Theory, Porosity, and Turbulence." It's impossible to picture today's research without fractal analysis.

This book presents the latest theory, developments, and applications related to high resolution materials-penetrating sensor systems. An international team of expert researchers explains the problems and solutions for developing new techniques and applications. Subject areas include ultrawideband (UWB) signals propagation and scattering, materials-penetrating radar techniques for small object detection and imaging, biolocation using holographic techniques, tomography, medical applications, nondestructive testing methods, electronic warfare principles, through-the-wall radar propagation effects, and target identification through measuring the target return signal spectrum changes.

The first book to present a systematic and coherent picture of MIMO radars. Due to its potential to improve target detection and discrimination capability, Multiple-Input and Multiple-Output (MIMO) radar has generated significant attention and widespread interest in academia, industry, government labs, and funding agencies. This important new work fills the need for a comprehensive treatment of this emerging field. Edited and authored by leading researchers in the field of MIMO radar research, this book introduces recent developments in the area of MIMO radar to stimulate new concepts, theories, and applications of the topic, and to foster further cross-fertilization of ideas with MIMO communications. Topical coverage includes: Adaptive MIMO radar Beampattern analysis and optimization for MIMO radar MIMO radar for target detection, parameter estimation, tracking, association, and recognition MIMO radar prototypes and measurements Space-time codes for MIMO radar Statistical MIMO radar Waveform design for MIMO radar Written in an easy-to-follow tutorial style, MIMO Radar Signal Processing serves as an excellent course book for graduate students and a valuable reference for researchers in academia and industry.
Digital Signal Processing 101: Everything You Need to Know to Get Started provides a basic tutorial on digital signal processing (DSP). Beginning with discussions of numerical representation and complex numbers and exponentials, it goes on to explain difficult concepts such as sampling, aliasing, imaginary numbers, and frequency response. It does so using easy-to-understand examples with minimum mathematics. In addition, there is an overview of the DSP functions and implementation used in several DSP-intensive fields or applications, from error correction to CDMA mobile communication to airborne radar systems. This book has been updated to include the latest developments in Digital Signal Processing, and has eight new chapters on: Automotive Radar Signal Processing, Space-Time Adaptive Processing, Radar Field Oriented Motor Control, Matrix Inversion algorithms, GPUs for computing, Machine Learning, Entropy and Predictive Coding, Video compression. Features eight new chapters on Automotive Radar Signal Processing, Space-Time Adaptive Processing, Radar Field Oriented Motor Control, Matrix Inversion algorithms, GPUs for computing, Machine Learning, Entropy and Predictive Coding, and Video compression. Provides clear examples and a non-mathematical approach to get you up to speed quickly. Includes an overview of the DSP functions and implementation used in typical DSP-intensive applications, including error correction, CDMA mobile communication, and radar systems.

The main purpose of the conference is presentation of the novel results in science and technology and the exchange ideas in the area of Radioelectronics, Telecommunications and Computer Engineering.

This volume is an initiative undertaken by the IEEE Computational Intelligence Society’s Task Force on Security, Surveillance and Defense to consolidate and disseminate the role of CI techniques in the design, development and deployment of security and defense solutions. Applications range from the detection of buried explosive hazards in a battlefield to the control of unmanned underwater vehicles, the delivery of superior video analytics for protecting critical infrastructures or the development of stronger intrusion detection systems and the design of military surveillance networks. Defense scientists, industry experts, academicians and practitioners alike will all benefit from the wide spectrum of successful applications compiled in this volume. Senior undergraduate or graduate students may also discover uncharted territory for their own research endeavors.

As well as being fully up-to-date, this book provides wider subject coverage than many other radar books. The inclusion of a chapter on Skywave Radar, and full consideration of HF / OTH issues makes this book especially relevant for communications engineers and the defence sector. * Explains key theory and mathematics from square one, using case studies where relevant * Designed so that mathematical sections can be skipped with no loss of continuity by those needing only a qualitative understanding * Theoretical content, presented alongside applications, and working examples, make the book suitable to students or others new to the subject as well as a professional reference.

By studying applications in radar, telecommunications and digital image restoration, this monograph discusses signal processing techniques based on bispectral methods. Improved robustness against different forms of noise as well as preservation of phase information render this method a valuable alternative to common power-spectrum analysis used in radar object recognition, digital wireless communications, and jitter removal in images.

This book constitutes the refereed proceedings of the 17th Australian Conference on Artificial Intelligence, AI 2004, held in Cairns, Australia, in December 2004. The 78 revised full papers and 62 revised short papers presented were carefully reviewed and selected from 340 submissions. The papers are organized in topical sections on agents; biomedical applications; computer vision, image processing, and pattern
recognition; ontologies, knowledge discovery and data mining; natural language and speech processing; problem solving and reasoning; robotics; and soft computing. This definitive volume covers state-of-the-art over-the-horizon radar systems, with emphasis on the practical application of advanced signal processing techniques. The set comprises: Volume 1: Novel Radar Techniques and Applications Volume 2: Novel Radar Techniques and Applications

This book presents novel research ideas and offers insights into radar system design, artificial intelligence and signal processing applications. Further, it proposes a new concept of antenna spatial polarization characteristics (SPC), suggesting that the antenna polarization is a function of the spatial direction and providing new ideas for radar signal processing (RSP) and anti-jamming. It also discusses the design of an advanced signal-processing algorithm, and proposes new polarimetric and anti-jamming methods using antenna inherent properties. The book helps readers discover the potential of radar information processing and improve its anti-interference and target identification ability. It is of interest to university researchers, radar engineers and graduate students in computer science and electronics who wish to learn the core principles, methods, algorithms, and applications of RSP.

These proceedings present technical papers selected from the 2012 International Conference on Intelligent Systems and Knowledge Engineering (ISKE 2012), held on December 15-17 in Beijing. The aim of this conference is to bring together experts from different fields of expertise to discuss the state-of-the-art in Intelligent Systems and Knowledge Engineering, and to present new findings and perspectives on future developments. The proceedings introduce current scientific and technical advances in the fields of artificial intelligence, machine learning, pattern recognition, data mining, knowledge engineering, information retrieval, information theory, knowledge-based systems, knowledge representation and reasoning, multi-agent systems, and natural-language processing, etc. Furthermore they include papers on new intelligent computing paradigms, which combine new computing methodologies, e.g., cloud computing, service computing and pervasive computing with traditional intelligent methods. By presenting new methodologies and practices, the proceedings will benefit both researchers and practitioners who want to utilize intelligent methods in their specific fields. Dr. Fuchun Sun is a professor at the Department of Computer Science & Technology, Tsinghua University, China. Dr. Tianrui Li is a professor at the School of Information Science & Technology, Southwest Jiaotong University, Chengdu, China. Dr. Hongbo Li also works at the Department of Computer Science & Technology, Tsinghua University, China.

Copyright: 90b112a45f84455bb8d3f220011f3b7f